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NONSYMMETRIC INFLATION OF A MAGNETIC DIPOLE 

E. N. Parker 

Abstmct 

The basic theoretical properties of nonsymmetric inflation of a dipole 

magnetic field by ionized gas are pointed out. It i s  shown that the distortion 

AE of the field in the neighborhood of the dipole depends very much upon 

whether there i s  a nonconducting layer present and upon the configuration of the 

inflating gas, in contrast to symmetric inflation, where 

upon the total energy of the inflating gas. Dissipation of the nonsymmetric portion 

of the inflating gas i s  mpid because nonsymmetric inflation drives vfi g, 
or current,down along the magnetic lines of force and across the ionosphere. 

Dissipation i s  also mpid because of the nonsymmetric distortion of the field, whose 

pattern rotates with the azimuthal drift of the inflating gas. The high rate of 

dissipation implies that nonsymmetric inflation can probably be important only during 

the active phase of a magnetic storm. 
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1. Introduction 

The linear theory of the distortion of a dipole magnetic field inflated 

with an ionized gas i s  now well known (Dessler and Parker, 1959; Parker, 1962; 

ApeI, Singer, and Wentworth, 1962; Sckopke, 1966) for gas distributions with 

rotational symmetry. The theory shows that the distortion 

borhood of the dipole i s  independent of everything except the total thermal energy 

e of the inflating gas. The distortion A B  i s  uniform in the vicinity 

A& in the neigh- 

of the dipole, points in the direction of the dipole, and has a magnitude 

given by 

where 6- 
i s  the mag- at a radial distance = ,and e, E f 'B, a 

netic energy of the dipole field outside the sphere f = a . In particular, the 

result given by (1) i s  independent of whether there are nonconducting regions, such 

as the terrestrial atmosphere, in the dipole field. The field is  stationary everywhere 

i s  the unperturbed dipole field intensity at the equatorial plane 

L a 

in space and there are no dissipative effects (except for inelastic collisions of 

the inflating particles). 

This paper presents the additional effects which arise in the distortion 

of a dipole field by a nonsymmetric gas distribution, pointing out that a nonconducting - 
shell, such as the terrestrial atmosphere, may then have profound effects on the 

dissipation rate and on the worldwide average distortion 

a given gas energy 

AB produced by 

. In order to explain the new effects which arise 
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from the combination of a nonsymmetric distribution and a nonconducting shell 

= a , consider first a nonsymmetric gas distribution inflating a dipole field 

pervaded everywhere with a tenuous (zero stress) highly conducting fluid. Once 

this case i s  worked out, the consequences of a nonconducting shell are immediately 

evident. To keep the exposition as simple as possible, consider the hypothetical 

situation that the gas pressure which distorts the dipole i s  the result of 

distributed uniformly along an azimuthal segment 

N particles 

A$ 
in the equatorial plane, as sketched in Fig. 1. Let a l l  the particles have 

at a radial distance. 

R 
the same velocity w 

drifts around the dipole with azimuthal velocity 

in  time. The azimuthal drift velocity UN i s  then 3 C / u / q  

where 9 i s  the charge of each particle and + i s  the diamagnetic 

moment f M / S ( W  

the segment i s  = N M w A and the total diamagnetic moment i s  N,u = r)&@* 
The magnetic field i s  distorted by the pressure of the particles in the seg- 

perpendicular to the magnetic field, so that the segment 

UH but does not disperse 

of each particle. The total particle energy in 

ment. In particular, the magnetic field surrounding the segment of particles tends 

to squeeze the diamagnetic particles out of the dipole field. The particles are, of 

course, tied to the lines of force through the segment, with the result that the lines 

of force through the segment are distorted outward. The outward distortion of the 

lines of  force permits some outward expansion of the field nearer the dipole, just as 

when the particles are distributed wi th  axial symmetry (Dessler and Parker, 1959). 

But the calculation of the resulting A B  from the particle stresses i s  a l i t t le 
k 

more complicated than in  the case of axial symmetry because VX & IS 
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not zero outside the region of particles. 

A brief review of the basic theoretical formulation of the problem wi l l  

help to see our way through. The point i s  that VX & i s  determined by 

the particle pressure, and the formal theory gives the distortion 

volume integral over OX - B . so VX& i s  the vector on which 

the theory i s  built. Formally the distortion 

is  related to the 

relation (Parker, 1962) 

A 8 as a 

h E &) at any point 

v g  8 (produced by the pressure) through the integral 
LII 

. The quantity VX f i  i s  calculated 
1 * 

where = r - r 
CI r r r h  

from the equation VP = (t))(@ x 8 /4x 

between the particle pressure 

exerted on the medium.** In the axially symmetric case the 

for hydrostatic equilibrium 
CI., 

and the magnetic stress (VX X@ /& 
produced 

P 
vx 

i s  everywhere perpendicular to & , so that taking the Vector 
by P 
product with yields VX @ = 4~ P p  x &/B2 , permitting 

If the pressure i s  not isotropic, then the hydrostatic equation must be written in 
tensor form, DPbi = aMi;/ar ; where P cj i s  the 
poessumtm~~lrand t4.j = - S,; 8 7 ~ ~ + & q / &  i s  the usual Maxwell 
stress tensor for a magnetic field. 

* n e  Prg and the current density are interchangeable through 

** 

Maxwell’s equation c Vx - 8 t 4~ j quasi-steady fields. 
.II. 
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calculation of VK 5 for any given pressure distribution p . The 

V 

I ’  

I *  

. 

. 

vector VK 8 i s  in the azimuthal direction and the lines of 9x 8 form - kr 

closed circles around the dipole. 

In the nonsymmetric case can be traced out only by some 

gives the further considerations. The condition vp =: (V&&)X B/4R 
perpendicular component of v&@ 
parallel component of VX@ 

perpendicular VX B 

c15 

alright, but there i s  in general a 

too, which may in turn lead to additional 

elsewhere. We are considering a dipole field f i l led 

with a tenuous Ohmic fluid exerting no stresses on the field. Currents, and hence 

VX 8 are free to flow anywhere and in any direction throughout the field. 

In the segment of particles the net field distortion pX@ ( o r  j ) i s  non- 

vanishing and i s  a vector pointing forward (if the particles are positively charged) 

along the segment. Since the divergence of VX B 

Y 

j > vanishes 
( or cc * 

everywhere, the vector VX (or j 1 cannot terminate at the ends of * 
clr 

the segment, so VX ,& 
Beyond the ends of the segment we have (VX @) x B = 0 

forces are exerted. Hence VX B 
origin along the dipole lines of force as indicated by the arrows in Fig. 1. It i s  this 

unavoidable streaming of 9gE 

must extend into space beyond the segment. 

because no 
.c 

flows away from the segment into the 
rh 

i 

inward along the magnetic lines of force 

wher) the inflation i s  nonsymmetric that makes the great difference from the 

symmetric case. 

So long as we confine our attention to A B  at the origin, it i s  - 
readily shown, from the familiar right hand rule and the symmetry of the dipole lines 
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of force, that the VX 8 

Thus, in spite of the more complicated pattern of 

along the dipole lines of force produces no effect. - 
m(,s , only the 

I 

in the segment of particles contributes to A@, at  the origin. E? 
The distortion A &  at the origin i s  s t i l l  given correctiy by (1)* 

Now insert a nonconducting shell at r t a . The change i s  that 

V’B (oc j ) cannot penetrate inward along the magnetic lines of force 
(ILI 

z 

across the nonconducting shell. So the vector circuit for VX 8 must close 
CII 

between the lines of force before reaching r = a 

pattern for VK 8 , one in which PX E) X 

i s  changed, with 8 the pattern of VA@ 

lines of force in P > 1 alters the distortion 

k 

crr 

, leading to a new 

cs 8 #O e The fact that 

crossing over between 

A 8  at the origin, - 
so that (1) i s  not generally valid. Further, the nonvanishing of @A@ )A 

where a@ 
fluid into some motion ,V 

crosses over means that the magnetic stresses drive the background 

, providing an additional source of dissipation. 

In the simple case that the conductivity perpendicular to the magnetic 

lines of force i s  largest just outside = a (as in the actual case of the 

ionosphere above the nonconducting atmosphere) the transfer of VA& ( o r  j ] 
c 

*There are some differences, of course. The distortion 68 
Pa AE er Q- 

i s  no longer uniform 
in the vicinity of the origin. But since 
of the origin, i t follows that the field A& 
represents the mean AE 
produced by the stresses of the particle segment at 
may be new sources of dissipation as a consequence of the drift of the particle seg- 
ment and the resulting change of 
origin. More wi l l  be said on this later. 

in the neighborhood 
computed at  the origin from ( l ) ,  

A B  
over any small sphere centered on the origin. Hence 

~ E l o )  i s  s t i l l  an approximate representation of a worldwide average 
r = f? * Finally, there 

with time at points removed f&m the A& 
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between lines of force takes place at  A and C in Fig. 1, just outside 

r =  A . For simplicity suppose that the transfer follows the shortest path 

between the lines of force, indicated by the short connecting segments in Fig. 1. 

Consider the net distortion A E  at the origin. The contribution 

along the dipole lines of force i s  again zero, for reasons of of V x 8  

symmetry. The segment of particles again contributes the amount given by equation 

(l), but it i s  insttuctive to note that this can be broken down into two contributions 

(Dessler and Parker, 1959): The drift uc gives a current 1 l\lq UH /R A# 
associated with a field 1 AH/< in the direction of the dipole at the 

origin; the diamagnetic moment N w .  gives a field - h!! / /? at 

the origin. In addition to the particle segment the crossover segments at 

and c give a contribution to A E  at the origin. Each crossover segment 

carries a current I/2 . If 8, i s  the polar angle of the mdius vector 

drawn to the crossover segment at 

- 

3 

A 

A 

A# a sin 8 ,  . The A segment intersects the dipole line of 

, then the length of the segment i s  

force crossing the equator at = e , so that Q and 8, are related 

by 1 e sir\ ‘e, . The current p / z  in the segment i s  associated with 

the field 1 & si- S e / Z  c a at the origin, with the component 

- r A# @, / zC  = - 1: Ag/Zc in the direction of the dipole. 

The crossover at c gives an equal contribution. But the particle segment 

gave IA# / c  R 
There remains only the diamagnetic contribution 

particle segment, which can be written 

, so the algebraic sum of a l l  three segments i s  zero. 

40 = - N/u. /R3 of the 
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the minus sign implying that h i s  directed opposite to the dipole. This 
CIL 

relation, in which A 8  i s  negative, replaces ( I ) ,  in  which AB was positive! 

As a matter of  fact, the result (4) i s  correct for the general case that 

the transfer of VX LI.. B i s  distributed continuously along the lines of force. The 

general calculation i s  obvious once the special case i s  worked out, so there i s  no need 

to give it here. 

The calculated A Y B in (4) represents an increase of the horizon- 

tal component at the surface of Earth which i s  half as large in magnitude as the 

decrease produced symmetric ring of particles. 

Now the precise form of (4) i s  dependent on the idealization that the 

transfer of OK8 (W j ) between lines of  force i s  restricted to a simple linear path, 

whereas in the actual case the transfer wi l l  be broader. We have used the simple linear 

- C s  

path only to establish the important qualitative differences which are introduced by the 

combination of nonsymmetric inflation and a nonconducting sphere. The next section takes 

up the complication that the crossover goes both east and west between the magnetic 

lines of force. 
II. Inflation by Several Segments of Particles 

Consider VxB when there are n equal spaced azimuthal 
CLr 

segments of particles distributed around the equatorial plane at a radial distance 

AB4 R as sketched in Fig. 2. Denote the length of each segment by 

and the separation between their ends by A $  . I t  i s  shown in Appendix I 

that the crossover of VX 83 between lines of force at r t a may be 
.rs . 

thought of as being restricted to the segments shown in  Fig. 2. For convenience 

we deal with the currents rather than , leaving the correct physical - 
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interpretation of the electrical impedance to Appendix I. Denote the current in each 

particle segment by I , and denote the impedance of the plasma between the 

lines of force separated by A 6 and Adz by 2, (Add) and 

22r ( d a  ) respectively. Under steady conditions there i s  no net flow of 

magnetic lines of force toward or away from the axis of the dipole, so the line 

integral of the electric field must vanish around either of the circles formed by 

the crossover paths at r = a . Hence i f  I i s  the current crossing 

over A$, and over Afia , it follows that t, = r,& , 
taking a l l  current magnitudes to be positive. Conservation of current requires that 

. It i s  readily shown, from symmetry considerations r =  z ( 1 , t  1,) 
that the total field distortion 

dipole. The diamagnetic moment of the particles contributes 

at the origin i s  in the direction of the 

00 B, R’ 3 

at the origin. The streaming of 

tributes nothing. The 

the crossover segments at  r = a , contributes a total of 

VX 8 (W 5 ) along the lines of force con- 
rkr CI 

VXE ( 01 3) in the particle segments, and in 



-9- 

. 

. 

The total A@ at the origin i s  in the direction of the dipole with a magnitude 

AB = . if we were to make the assumption that the electrical 

impedance between two tubes of force passing through the ionosphere were proportional 

to the separation, it i s  evident that AB& = 'Bo E / € h  so that the total 

distortion i s  given by (1) again. But in fact 

to the logarithm of the separation, because of the geometry of the two dimensional 

flow between widely separated points. This i s  shown in Appendix I, together with a 

discussion of the physical significance of in the present hydromagnetic 

context. 

AB, + A 8, 

i s  more nearly proportional 

2 

between two small - The two dimensional electrical impedance 2 
regions of dimension s separated in a uniform resistive medium by a large 

distance p i s  proportional to ! h  D/S . With a A@ Si; 

and (a/S)  SI^ 80 we have OC Ln mAjd where ~ A j g  >> f 

as a consequence of the smallness of S . Then 

AB& - = + -  E 9+A#2/A#2 (7) 

'B. f~ 1 .C l a  (rnA&)/fr, ( h A $ g j  . 
To exhibit the theoretical range of variation of 

that 

making A#$ small.* In this limit 

68 a / 8 0 suppose 

6, f a  / & # d  becomes large without l i m i t  as a consequence of 3 5 

* With S sufficiently small that 4 8  4 remains large compared to 
1 one, of course. 
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which increases without bound 'A Thus in the l i m i t  of short particle segments the dis- 

tortion field at the origin can be made arbitrarily large. The direction of A 8  

i s  such as to represent an average decrease of the horizontal component over the 

surface of any small sphere enclosing the dipole. 

The opposite limit, that 9 becomes very small, with both 

Ad4 and m A+a remaining large, leads to 

0 
J 

8 

depending upon the magnitude of rr\ A # ,  The total field i s  then 

In this case the net distortion 

(1). 

AB may be rather less than the value given by 

These hypothetical extreme examples show that there i s  a wide range 

of theoretical possibilities.* Altogether, it i s  evident that nonsymmetric inflation 

* The example of the previous section, in which the total A 'B actually is 
negative, i s  recovered by making 21 / z1 > > 3 here. 
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in combination with a nonconducting atmosphere leads to a greater r a n g e o f  dis- 

tortions than the symmetric inflation described by (1). 

111. Discussion 

The exposition has pointed out the basic theoretical effects of non- 

symmetric inflation of a dipole magnetic field. In particular, a nonconducting 

atmosphere surmounted by an ionosphere permits a wide range for the worldwide 

average of the magnetic distortion A 8  / 8. . In one extreme the inflation 

could produce a worldwide increase , described by (4), though we do not urge that 

this extreme i s  ever realized in nature. Generally speaking, an avemge worldwide 

decrease of the horizontal component i s  expected, ranging from a fraction to 

rather more than the value given by (1). 

The reader should be aware that a number of serious idealizations 

have been introduced in order to make possible a concise presentation of the principal 

effects. The basic principles which we have pointed out are essentially unaffected 

by the idealizations. But, of course, the complications of the real situation must 

be included when one eventually constructs models for quantitative comparison 

with actual geomagnetic storms. To mention a few of the idealizations, we have 

neglected the Hall effect and ambipolar diffusion. We have made no attempt to 

follow the dispersion of a bunch of  particles arising from the velocity spread of 

the particles. 

The discussion h a s  been limited to 68 at the origin because 2 LI. 

the value at the origin i s  equal to the average over any small sphere centered on 

the origin, and hence i s  a first approximation to the worldwide average AE . 
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But we have ignored the large local effects that occur around Earth i n  the nonsymmetric 

inflation. Finally, we have swept the fringing fields under the rug in Appendix 1. As 

pointed out in Appendix I, the idealized particle segments would soon be deformed 

into arcs by the dissipative effects in the ionosphere, to which the nonsymmetric 

portion of the inflation i s  strongly coupled. 

Returning to the qualitative points established in the text, consider the 

dissipation of the thermal energy of the nonsymmetric inflation. The portion of the 

inflating gases that i s  symmetric about the dipole axis i s  subject to no dissipation 

apart from atomic collisions and perhaps some internal plasma instabilities. The 

theoretical and observed dissipation time i s  typically 10 sec (Dessler and Parker, 

1959). In contrast, the nonsymmetric portion of the inflating gas i s  obliged to drive 

currents and winds in the ionosphere, where the Cowling conductivity i s  as small 

6 0  
as 10 - 10 esu (Hanson, 1961). Consequently the dissipation time must be very 

short, probably of the order of 10 - 10 sec.* A simple rectangular example 

of the dissipation i s  outlined in Appendix I I ,  illustrating the outward motion of the 

inflating particles as they lose energy to the ionosphere. 

5 

2 4  

When we look into the local magnetic effects of nonsymmetric inflation 

there are obviously additional dissipative effects. As noted earlier A E  (E) 

is  not a uniform field in the vicinity of the origin. The local inhomogeneities, which 

* Alternatively the ionospheric currents may be viewed as the result of the diamagnetic 
buoyancy of the particles. The dissipation in the ionosphere permits the buoyancy 
of the particles to convect the particles, and the associated lines of force, outward 
through the geomagnetic field. This brings us to the viewpoint expressed first by 
Gold (1959; Chang et at., 1965). -- 



can be very large, drift around with the inflating particles, producing local contortions 

in the ionospheric gases coupled to the total magnetic field. These are in addition 

to the ionospheric currents discussed so far. 

In addition to dissipation, there i s  the deformation of the @did? tejmenis,  

caused by the fringing field (see Appendix I),and there i s  dispersion,as a consequence 

of the different particle velocities. A particle with 5 kev per unit,,chage has a 

drift velocity of about 1.5 km/sec at a distance of 4 Earth's radii, moving 5 x 10 km 

e le d vo n 

3 

in one hour. The drift velocity i s  proportional to the particle energy, so that 

azimuthal inhomogeneities in the gas are probably smeared at some rate of the order 

of 1 km/sec, giving a l ife of the order of  minutes to hours. 

Altogether, then, nonsymrnetric inflation i s  rather quickly dissipated 

and dispersed. Hence significant nonuniform inflation of the geomagnetic field i s  

d..P 
expected only during the active phase of a magnetic storm. I t  may be that theAportion 

of some main phases which relaxAquickly after the active part of the storm i s  the 

result of nonsymmetric inflation. The basic theoretical properties of nonsymmetric 

es 
\ 

inflation have been pointed out in this paper and i t  remains now to show from 

observational analysis of local variations at the surface of Earth and in space the 

extent to which nonsymmetric inflation contributes to the worldwide average decrease 

of the horizontal component during a magnetic storm. 

The author wishes to thank Dr. Ian Lerche for comments and criticism 

on preliminary versions of the manuscript. 



Appendix 1. Motions Driven by Particle Segments 

The text of this paper has ignored the spreading of v& B 
crossing between magnetic lines of force through the ionosphere. The crossover was 

represented by a line segment w i th  an electrical impedance 

in - 
2 . But the 

problem i s  really hydromagnetic in chamcter so that impedance and 

secondary quantities, in spite of their occasional convenience, and it remains for us 

to explain and to justify the treatment used in the text. 

e m f  are 

Consider, then, the physical significance of the impedance through the 

ionosphere between two tubes of flux separated by a distance . The 

buoyant force exerted by the particle segment at tends to carry the 

lines of  force outward, and the feet of the lines of force poleward. The viscosity 

A# 

r = 17 

of the ionosphere, and the nonconducting atmosphere beneath, resist the poleward 

drift o f  the feet of the lines of force. The force exerted on the ionosphere by the 

magnetic field i s  (VX E ]  K E /dr , or, in terms of the current induced 

by VX@ , the force i s  3 8 / c  . Now for stationary conditions 

there can be no net poleward drift of  magnetic lines of  force. So if the feet of 

.c 

some lines of force are being moved poleward by the buoyant forces of particles 

trapped in the field, there must be other lines of force being squeezed out of the 

polar regions and pushed toward the equator. The viscosity of the ionosphere resists 

the motion of the feet toward the equator, so ( V X ~ )  x E 
vanishing there too. The precise distribution of 

wi l l  be non- 

VX B over the regions 
z 

moving toward the poles and toward the equator depends, obviously, upon the 

worldwide variation of  viscosity and resistivity over the ionosphere. (See Gold, 

1959; Axford and Hines, 1961; Chang e t  al., 1965). From the connection -- 
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47t3 = c VXB h between VX - 0 and the current density, it i s  evident 
*Ir 

that the electrical impedance i s  small in those regions of the ionosphere where 

V X  e i s  large,and large where 9 X  H B issmall. Thus 1/2 i sa  
NI 

measure of  the local force exerted by the field on the ionosphere. 

It i s  instructive to treat in a rigorous manner one simple hypothetical 

example of the crossover of 

lines of force. The example shows the deformation of the driving particle segments, 

V X  B through the ionosphere between magnetic - 
which must be added to the dissipation and dispersion already mentioned. In 

addition the example demonstrates the validity of approximating the init ial cross- 

over paths as simple segments. Represent the ionosphere by a thin plane sheet ic = 0 > 04 

P o  IhicknegS 6 , with surface conductivity 6 and surface density 

Take the ionospheric fluid to be incompressible with a possible velocity distribution 

c1 v ( X d )  as a consequence of pressure p and magnetic forces 

- F . Then v* 2 = 0 . Viscous interaction with the nonconducting 

atmosphere beneath produces a drag which, as a first approximation, can be represented 

by - Ku where K i s  a constant. 
w 

The two dimensional equation of  motion is, then 

F - v  nl. + =  = -A - K 
at P P P 

Represent the geomagnetic field by the uniform vertical field = 8, . 
L 

The interaction of  the ionosphere with the vertical field produces small magnetic per- 

turbations - b , which are associated with the ionospheric current density 
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. 

t c Vx_b/L)n . lnteg i 
CI 

the surface current density 1 
gting j over the ionospheric thickness yields 

where, incidentally ( 2, y >  = g* AA 
1 -  

where A b c i s  the change in b across the ionospheric layer of small 

thickness f . We have neglected the term 6 VX sBbs 

assuming that E i s  small compared to the horizontal scale of b, . In 

, the magnetic force F i s  x g ,  &/< \ - terms of the surface current 2 
z 

The current density 111. 2 i s  given by Ohm's law as 

For quasi-stationary conditions VX E = 0 and 9. CI i = 0 . It 
i s  readilyshown that 9 8  h i =: 0 so that z i can be written as 

, and 

clr 

. I t  then follows that V % E  = V* F = 0 - 9f rrrr 

the curl of the equation of motion gives d RU c /Olf = -&u)pX_U cl(pxr).V) hc v 

so that we may put 0 x 3  = 0 . Since 9. 3 '0, write 
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2 w e VX 4 

p 

A (I>)) where v A = 0 . To determine the pressure 
h - ?  

, take the divergence of the equation of motion, obtaining 

after using the vector identity (& v)_V = v V ' / Z  when 

If the velocity vanishes and the ambient pressure i s  

flow, the solution is  

~ X , V  = 0, 
pe outside the region of 

The equation of motion may now be written 

For quasi-steady conditions /at  2 0 , so that 
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 KC i s  a constant, it fo1lows that the streamlines and the equi- 
Since P 
potential surfaces coincide, just as in  a nondissipative medium where ,V = c E %BJ B f 

UI 

It follows that ,y )< ,B , and hence j and VX& are parallel to . 
.LI 

Consider, then, the flow as a consequence of P X  
or j 

LL. 

(driven by particle segments elsewhere along the magnetic lines of force) entering 

the ionospheric sheet 3 = 0 in a small neighborhood of each of the points 

x = & Znh , ) E O  where n = 0, 1 ,  2, J 

and leaving at x = (+ & + I )  h = 0 e The equipotentials and 

streamlines are sketched in Fig. 3. It i s  a simple matter to prove that the disturbance 

driven by the sources of 7% e at x = f n h  drops off 

exponentially at large distance wi th  a characteristic length h 

. If the sources and sinks are equivalent 

to the charges of f 9 respectively, then 

where 

The series are readily summed using the contour integrals 
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in the complex w - plane. The integrals have poles at w = A LnA and 

i z k p  . The result i s  

It i s  evident that the field declines as czp c r\: y I / A ) at large 

i . This fact i s  important because it means that the effects of - ) ) . I  
or VX b at distances large compared to k may be calculated as 

etc where confined to the real axis. This i s  the fonnal justi- i though - 
fication for treating the crossover paths in the text as simple line segments. It i s  

also the justification for ignoring the crossover between the northern and southern 

hem isp he res. 

The magnetic lines of force of B, are essentially equi- 

potentials. Hence, the electric field configumtion sketched in Fig. 3 maps out 

of the ionosphere along the magnetic lines of force, having the same pattern else- 

where along the lines of force as in the ionosphere (see general discussion in 

Axford and Hines, 1961). Hence the flow 

particles at large 

c d  f i & /  B a of the driving 

in the equatorlahis essentially the same as in the 
@a-c 

P 

ionosphere, with the result that the particle segments are steadily deformed and 

soon are not simple segments. The particle segments in the e,quatoriaI plane 
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are deformed in the manner illustrated by the streamlines in  Fig. 3. The particle 

segments, responsible for driving the system, not only dissipate and disperse, but 

deform as well. The next appendix gives a simple rectangular system in which the 

deformation of the particle distribution i s  absent, permitting the dissipation to 

be studied in a particularly simple manner. 



. 
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Appendix II. Dissipation from i4onuniFutm Rski:Ien 

Consider a simple example of the dissipation and outward convection of 

clumps of particles inflating the geomagnetic field. The actual dipole geometry 

of the geomagnetic field produces so many complications in  the calculation that it 

obscuressome of the physical effects, so we choose here a simplified, albeit artificial, 

geometry. The deformation of the particle distribution i s  eliminated at the expense of 

quantitative similarity to the actual geomagnetic situation. To accomplish the simpli- 

fication, straighten out the magnetic lines of force keeping 2 = 0 as the 

equatorial plane. Transform the ionosphere into the planes z = f h  and the 

field into 8 = b e  

and ionosphere i s  thereby maintained. Place the particles in the 

equatorial plane, distributed with surface density 

. The magnetic connection of the equatorial plane 

E = 0 

n ( X  ) in strips of width 

d7,  extending in the x-direction and separated by empty strips of width 

(I -d) 1 i s  a fixed fraction less than one. 

The strips of uniform width would correspond to radial sectors in the equatorial plane of 

the geomagnetic dipole. The particles are a l l  assumed to have the same diamagnetic 

, as illustmted in Fig. 4. Here u 

moment /cc , so that i f  ( x )  i s  taken to be 'B, e x p ( x / L )  J 

the particles a l l  have the same drift in the positive y-direction (perpendicular to the 

strips) of . This corresponds to the azimuthal drift in  a dipole 

field. It follows that i f the particle strips were located in  

initially, where 

uI t At 9 L / 
0 1 4 p 4 (n +e> 1 

n = - 0 -  - 2 , -1 ,0 ,  + f  ,+2, o d  * , the strips subsequently occupy 

d +  U , t  c ) 4 (.+4)1 + U ) t .  
The ionosphere, folded around into Z L A h  , i s  represented 
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by a sheet of high conductivity. 

, 

Assume that the entire structure is  repeated over 2 from - 
to +oo (from 2 x A to 3c1 , - 1, to - 3 h  , etc.) 

thereby eliminating the complication of fringing fields at I! = d h 

Make h << L so that the unperturbed field lines are straight lines parallel 

to the z-axis, as assumed at the outset. Assume that the particle density n<x> 

i s  sufficiently small that the particle pressure does not greatly deform the magnetic 

field, so that the linearized form of the theory can be used. 

The vectors VxB or j ) produced by the particle stresses 
c1. - 

are indicated by the arrows in Fig. 4, flowing forward in the y-direction across 

the particle strips, where the surface current density i s  denoted by 1 n(x> “p 9 - 
The flow divides at the leading edge of each strip, streaming to the ionospheric 

planes z = A h  along the magnetic lines of force. At 2 = 3. h 

the vectors again split, flowing back the distance and forward the distance 

0 - o( ] 2 
edge of a particle strip. Denote the surface current density and electric field 

, and then returning along the magnetic lines of force to the rear 

by I and Ed in thestrip O( 1 at i! = dh ,and by 

1 s  and in the strip (1 - W )  2 . The current densities 

and r2 are confined to f h because of the assumed 1, 
high surface conductivity across the magnetic lines of force, t h q h  the conductivity 

i s  everywhere in - h 

fields E and E, are in  the y-direction since 2 < C  L . They 

2 4 4 h very high along the lines of force. The 
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are uniform over z from - A to + A  as a consequence of the high electrical 

conductivity along the lines of force. The electric fields are also uniform over y 

since 2 << L . Note that and I ,  are in the negative 

y-direction, and E 2 and are in the positive y-direction. 

Conservation of current (or VXB ) requires that 
c 

The electric potential difference over one period 1 in the y-direction i s  

- J . E i  + ( I - o ( ) Z E L  

where d i s  the surface conductivity of the ionospheric sheets. There i s  no 

net x-transport of magnetic lines of force, so a = 0 . Then 

Since the electric field is  uniform over 2 , the electric 

dri f t  of the particles at P = 0 follows from 1 computed at P = f h . 
The drift i s  in the negative x-direction with the speed 
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For steady conditions the particle flux n ( x )  d, must be independent of x . 

Hence make n ''6 8 independent of x . I t  is  sufficient to 

choose d ( x )  constant and 

to achieve stationary conditions. It follows that* 

This velocity i s  in the negative x-direction, indicating that the ionospheric 

dissipation convech the particles out of the field. 

The x coordinate of a particle at z = 0 when. f = 0 i s  

and the particle energy i s  

+ M @ '  = +  8c4 

*For as far in the negative x-direction as the guiding center approximation can 
be applied. 
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Hence the characteristic dissipation orescape time of the individual particles i s  

T =  Lad 8. 
(1- "o+ c to) 

Note that the dissipation rate 

density of the particles in space and to the width o f  the gap between particle 

strips. This general property applies to the dissipation and escape of bunches of 

particles trapped in the geomagnetic dipole. The rate of  energy loss for a given 

geometry i s  proportional to the square of the particle energy, and the energy loss 

decreases as the width of the gap between bunches of particles decreases, giving 

zero energy loss for an unbroken (axially summetric) distribution. 

I /  i s  proportional to the kinetic energy 

. 
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Figure Captions 

Fig. 1. Sketch of  the two dipole lines of force through the ends of the azimuthal 

segment of particles in the equatorial plane. The drift velocity of 

the particles i s  . The flow of VKB or the current 

I 
r = a and 80, 8 -  8 ,  are labeled A and c . 

i s  indicated by the arrows. The crossover segments at 

The geomagnetic dipole is  directed downward in  the sketch. 

Fig. 2. Sketch of  the dipole lines of force through the ends of a sequence of 

azimuthal segments of particles in the equatorial plane. The arrows 

indicate the flow of VXB along and across the magnetic 

lines of force. The geomagnetic dipole i s  directed upward in the 

- 
sketch. 

Fig. 3. The solid lines represent the flow of v% B (or current) through 

the ionosphere between the feet of equally spaced tubes of flux 

connecting into the ends of particle segments. The broken lines 

represent the associated drift C 

lines of force and particles. 

@ / 8  ’ of the magnetic 

Fig. 4. Sketch of the rectangular geometry of strips of particles in the magnetic 

in the z-direction. The strips drift to the right field 

as a consequence of 

sequence of the dissipation in the ionospheric planes 

The arrows indicate the direction of streaming of 

B ( x X )  

d 8 / d x  and into the page as a con- 

3 = -f h . 
vx 1& . 
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